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Abstract 

In a space-time admitting a two-parameter Abelian isometry group, and a quadratic Killing 
tensor with the eigenvalues (k, k, ~t, #) and vanishing Lie derivatives with respect to the 
Killing vectors, we construct a canonical coordinate system. The isometry group acts 
orthogonally transitively. The Hamilton-Ja cobi equation is separable. We give a necessary 
and sufficient condition for the separability of the Klein-Gordon equation. We obtain 
Carter's space-times with completely separable Klein-Gordon equation. 

1. Introduction 

Carter (1968) has discussed space-times admitting a two-parameter Abelian 
isometry group acting orthogonally transitively (Carter, 1969), and fulfilling 
the additional condition that the Hamilton-Jacobi equation is soluble by 
separation of variables (Woodhouse, 1975). The separability gives rise to a sepa- 
ration constant that proves to be a quadratic constant of motion generated by a 
quadratic Killing tensor (Penrose and Walker, 1970). This Killing tensor has 
(a) the eigenvalues (X, X, ~,/~), (b) vanishing Lie derivatives with respect to 
the two commuting Killing vectors, and (c) is not  reducible 1 to the commuting 
Killing vectors and the metric. 

Carter's stronger condition that the Schr6dinger equation also separates is 
equivalent to the condition that the Ricci tensor component  Rab v a w  b 
vanishes, where V a and W a are directions parallel to the two ignorable coordi- 
nate vectors used by Carter (see Dietz, 1976, Theorem 3). 

In this paper, we solve the "inverse Carter problem." We consider the Killing 
vectors and tensors of the space-time as the fundamental objects. We assume the 

t We distinguish between "reducibility" and "reducibility to a given set of Killing vectors": 
(a) A Killing tensor is reducible iff it can be written as a linear combination of sym- 
metric products of Killing vectors and of the metric with constant coefficients (Penrose 
and Walker, 1970). (b) A Killing tensor is reducible to the r Killing vectors 67 (i = 1,..., 
r) iff it can be written as a linear combination of symmetric products of these Killing 
vectors ~] and the metric with constant coefficients. 
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existence of  a two-parameter Abelian isometry group and a Killing tensor o f  
order 2 with the properties (a)-(c). In Section 2 we give the Killing equations in 
tetrad form for later use. In Section 3 we show that the conditions (a)-(c) make 
only one geometric situation possible, which we describe in terms of  intersec- 
tions between the eigenspaces o f  the Killing tensor and the group orbits. We 
construct canonical coordinate vectors and show that the assumed isometry 
group acts orthogonally transitively. In Section 4 we show the separability of  
the Hamilton-Jacobi, and the Klein-Gordon equation if additionally Rab v a w  b = 
0. The metric components evaluated in the setected coordinates are identical 
with those derived by Carter (1968). Our calculation holds for arbitrary 2 X and p. 

2. Killing Vectors and Killing Tensors 

A vector field ~a satisfying the Killing equation 

[~, g] ab = 0 (2.1) 

defines a Killing vector field, where [ ,  ] denotes the Nijenhuis bracket oper- 
ation in local coordinates defined by (Geroch, 1970) 

• d e . . .h )  [ A , B ] a ' " h :  = p A k (  a ' ' ' eVkBd ' ' ' h l  _ qBk( a'" Vk A 

where A and B are symmetric contravariant tensors o f  order p and q, respect- 
ively, and V is any torsidn-free connection. 

We generalize the Killing equation: A symmetric second-order tensor is 
called a quadratic Killing tensor if 

[K, g] abe = 0 (2.2) 

(34, g) is a space-time with signature (+ - - - )  admitting a two-parameter 
isometry group generated by the Killing v e c t o r s  ~i a with non-null group orbits, 
and a quadratic Killing tensor K ab satisfying 

[~1, ~z] a :  0 (2.3) 

[K, ~i] ab = 0 (2.4) 

K ab is not reducible t o  ~i a and gab and possesses two twofold degenerated 
eigenvalues X and p.3 We can choose an orthonormat frame 

E a = ( T  a ' X a ' y a ,  Z a) 
oz 

2 If X and ~z are independent functions, they may choose to be coordinates (cf. Corollary 
2). If additionally the condition (4.1) imposed on the Ricci tensor holds equivalent with 
RabDa;~bb,a = 0,  Hauser and Malhiot (1976) have shown that then the existence of the 
Killing tensor K ab implies the existence of the two-parameter Abelian isometry group 
generated by ~a, which acts orthogonally transitively and fulfills [~i, K] ab = O. 

3 We exclude the degenerated case X = ~ because then in consequence of [K,g] abe = 0 

K ab = const .gab 
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such that K ab can be written as 

Ka~ = X(T a T o _ x a x  b) _ l l (ya y b  + z a z  b) (2.5) 

where X and/l are the eigenvalues of K ab . Let the eigenspace of X be timelike. 
One frame vector has to be timelike, say T a. The metric tensor is 

gab = TaT b _ x a x  b _ y a y b  _ z a z  b (2.6) 

For the given Killing tensor (2.5) the eigenvectors ( T  a , X a, y a  Z a) are not 
unique since we have the freedom of a boost in the T X  eigenspace and a space- 
like rotation in the YZ eigenspace (Eisenhart, 1948, p. 110). We obtain, 
equivalently to Eisenhart (1948, p. 129), 

T(X) = X(X) = 0 = Y(/~) = Z(/~) (2.7a) 

T(ln i X - I . t i ) = 2 [ T , Z ] a Z a  

X(ln Ix-ut)= 2Ix, ~q~Y~ 
(2.7b) 

Y(ln l X -  u l )=  Z [ Y , X ] a X a  

Z(ln iX -/~1) = 2[T, ZI~T~ 

[ r ,  x l " x o  + I t ,  TI"To = 0 = [Z, XI"X~ + [Z, TI~Ta 

[T, Y ] a Y  a - [T, Z laZa = 0 = [X, Y l a V  a ---IX, Z laZa 
(2.7c) 

[Y, T]aXa + [Y, X laTa  = 0 = [Z, TlaXa + [Z, X laZa  

[T,Z]aYa + [T, Y]aZ a = 0 = [X,Z]aVa + IX, Y ] a z  a 

for the Killing tensor equation (2.2) using (2.5) and (2.6). For a Killing vector 
~a we get from (2.1) 

[~, E] aE a + [~, E] aE a = 0 (2.8) 
a t~ 13 c~ 

3. A Canonical Coordinate Sys tem 

The space-time considered admits a two-parameter Abelian isometry group 
generated by ~i a. The group orbits are two-dimensional surfaces. The Killing 
tensor (2.5) defines two two-dimensional eigenspaces spanned by T a, X a and 
y a  Z a, which are orthogonal. The eigenspaces define two-surface elements 
locally. If  we investigate all possibilities for intersections between the Killing 
tensor eigenspaces and the group orbits, which can be time- or spacelike, we 
find that only two cases can be realized because of reasons connected with the 
dimension and the timelike, spacelike, or null character of the surface elements, 
orbits, and their intersections: 

A. The orbits are timelike. 
1. The orbits and the T X  eigenspaces o f K  ab coincide locally. 
2. The orbits intersect the T X  eigenspaces in a one-dimensional timelike 

and the YZ eigenspaces in a one-dimensional spacelike intersection. 
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B. The orbits are spacelike. 
1. 
2. 

DIETZ 

The orbits and the Y Z  eigenspaces coincide locally. 
The orbits intersect the T X  and the Y Z  eigenspaces in a one-dimensional 
spacelike intersection. 

Lemma.  In the given space-time, the Killing tensor K ab is reducible 
to ~i a and gab, if one eigenspace o f K  ab coincides locally with the 
orbits. 

Proof. The proofs for A1 and B1 are completely analogous. We consider 
case AI :  We use the freedom of  a boost in the T X  eigenspace o f K  ab (see 
page 543) to turn T a in the direction of the (say timelike) Killing tensor ~la: 

~1 a = r T  a and ~2 a = c~T a + / 3 X  a (3.1) 

After evaluating the equations (2.8) for ~i a together with (2.7) we have ~ = const, 

Y(ln I r 1) = YOn I a [) = Y(ln I/3 l) = Y(ln IX - U 11/2) 

and vanishing derivations in the directions of  T a , X a , and Z a. We integrate and 
obtain, with constants ca, c~, and ex, 

r = c~cL = c~3 = ca t X - t l l  1/2 

from which it follows that 

K ab = c~ ~la~l b + c2~2a~2 b + c3~1(a~2 b) + ldg ab 

where Cl,  c2,  and c a are combinations of  ca, c~, and cx. (We have to remark: 
We get the same expression for K ab if ~1 a is spacelike.) Because of  our assump- 
tion that the given Killing tensor K ab is not  reducible to ~a and gab we exclude 
A1 and B1. A2 and B2 remain to be investigated. 

Theorem 1. t f  in a space-time (M,g) admitting (a) a two-parameter 
Abelian isometry group generated by ~i a ( i  = 1,2),  (b) a quadratic 
Killing tensor K a~ with the eigenvalues (X, X,/~,/l) commuting with 
~i a, the eigenspaces do not coincide locally with the group orbits, 
then the vectors ~1 a, M X  a, N Y  a, ~2 a commute in pairs, where M 2 = 
(X - / ~ ) '  Axl and N 2 = (X - g )Ay 1 , with functions A x and Ay ful- 
filling T ( A x )  = Z ( A x )  = Y ( A x )  = 0; T ( A y )  = Z(Ay) = X(Ay) = 0 so 
that M 2 and N 2 are positive. 

P r o o f  Without loss o f  generality we give the proof for the timelike orbits 
(A2). 4 We use the freedom of  a boost in the T X  eigenspaces to turn T a in the 
direction o f  the timelike intersections between the orbits and the T X  eigen- 
vectors, the freedom of  a spacelike rotation to turn Z a in the direction of  the 
spacelike intersections between the orbits and the spacelike eigenspaces of  
K ab such that 

~a = o~iT a +/3iza (3.2) 

4 In the case of spacelike orbits we substitute T by X and vice versa. 
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with function ~i, ~i satisfying % ~2 - o~z/31 :~ O. We evaluate equations (2.8) 
and (2.4) for ~i a and obtain 

~i(X) = 0 = ~i(U) (3.3a) 

because 

[cf. equation (2.8)1 , 

and 

[~i, E] aE a = 0 

[~i, 7/'] a X  a + [~i, X]aTa = 0 = [~i, Y] aza + [~i, Z] a Y a (3.3b) 

[~i, T]aG + [G glaTa = 0 = X[G T]aG + ~[~i, YlaG 

[~i, T] ~& + [GZ] aG = 0 = X[~;, T] °G + U[G Z]~G 

[G x] a G + [G ¥] ~xa = o = x[~;, x] ~ G + u[~;, Y] aXa 

[~, X] ~Za + [G Z] ~X~ = 0 = X[G X] aZ~ + ~[~;, Z] ~X~ 

Since X - / a  :~ 0 (see footnote 3 above), all these commutator  components 
vanish. Therefore and with 

[~;, El  aEa = 0 

[see (2.8)] we find 

[ G  T] a ~ X a ' [ G  X ]  ~ ~ r a , [ ~ ,  Y]  ~ --. Z ~, [ G  Z ]  ~ ~ Y~  

where we insert the tetrad form (3.2) of  ~i and transvect the first relation with 
Ya and the last relation with X a in order to obtain 

[ r ,  Z] aXa = 0 = [ r ,  Z] ~ G 

That implies [~i, T] a x  a = 0 = [~i, Z] a Ya and with (3.3b) 

[~i, El  a = 0 (3.4) 
¢x 

We express the tetrad vectors T a and Z a because of (3.2) as linear combinations 
of the Killing vectors ~i a and find from (3.4) 

IV,  T ] a G  = 0 = [Y,  Z l a G  

[X, T la  ya = 0 = [X, Z l a  Ya 

and because of  the Killing tensor equation (2.7c) 

IX, Y l a G  = 0  = [X, Y ] a &  

so that 
IX, y ]a  = E X  a + F g a  (3.5) 

with E = IX, Y] a x  a and F = IX, Y] a Ya" 
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Since T a and Z a depend linearly on the Killing v e c t o r s  ~i a , we try to take 
two vectors parallel to X a and y a  together with ~i a as coordinate vectors. 
From the Killing tensor equation (2.7b) we find 

2E = Y(ln i X - / l l )  and 2F = - x ( l n i x - / ~ [ )  

[MX,  N Y ]  a = 0 ~* 

so that 

~X(N2(X _ g ) - l ) =  0 

(3.6) 

Y(M2(X - I~) -~)  = 0 

This is fulfilled if 

M 2 = (X - / 2 ) A x l  and N 2 = 0 k --  ~ / ) A ;  1 (3.7) 

where A x and Ay are functions with the assumed properties. 
Additionally we obtain from (3.3) 

~(~ = 0 = ~ i ( X )  ( 3 . S )  

and because of (3.4) 

[~ ,  M X ]  ~ = 0 = [~i, N Y ]  ~ 

Therefore the vectors (~i a , M X  a , N Y  a) commute in pairs and can be chosen as 
a coordinate basis in (1t4, g).  Le t  ( t ,  x , y ,  4) be the associated coordinates where 
t and q5 are adapted to the Killing v e c t o r s  ~i a and x, y are orthogonal coordi- 
nates unique up to transformations of themselves. 

Corollary 1. The isometry group acts orthogonatly transitively. 

Proof.  X a and ya  span two-dimensional surfaces in consequence of (3.5) 
which are orthogonal to the orbits spanned by ~/a because of (3.2). 

Corollary 2. If  the eigenvalues X and/J of the given Killing tensor 
K ab are functionally independent, it is possible to choose X and # as 
coordinates. 

This is clear from (2.7a) and (2.7b), because T(~) = 0 = ZCa) follows from 
[ T , Z ] a T a  = 0 = [T, Z l a Z a .  

Hauser and Malhiot (1976) have chosen these coordinates (see footnote 
2 above). 

4. Separabil i ty  and Equivalence wi th  Carter's Metr ics  

It is well known that the Hamilton-Jacobi and Klein-Gordon equations 
separate with respect to coordinates adapted to commuting Killing vectors 
such that these equations separate with respect to t and ~ (see Woodhouse, 
1975; and Dietz, 1976). The Hamilton-Jacobi equation is also separable with 
respect to the orthogonal coordinates x or y: The Killing tensors K ab , ~la~l b , 
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~a~2b, and gab commute in pairs, have the common eigenvector O x or 0y, 
and the associated quadratic constants of  motion are independent functions. 
These are sufficient conditions for x or y to be an orthogonal separable 
coordinate for the Hamitton-Jacobi equation (Woodhouse, 1975). Therefore 
the Hamilton-Jacobi equation separates completely with respect to the given 
coordinates (t, x, y,  q~). 

Theorem 8 of Dietz (1976) ensures also the separability of the Klein- 
Gordon equation with respect to x or y if additionally the Ricci-tensor 
component R x y  vanishes, or equivalently (see footnote 2 above) 

R a b X  a yt~ = 0 (4.1) 

If  we use an invariant characterization of the eigenvectors X a and y a ,  we 
obtain the following: 

Theorem 2. In a space-time (M,g )  admitting a two-parameter Abetian 
isometry group generated by ~i a, and a Killing tensor K ab of second 
order with eigenvalues (X, 3,,/J, ~) and vanishing Lie derivatives with 
respect to ~t a the Klein-Gordon equation separates completely if 

Rab g a W b = 0 

where V a and W a are different eigenvectors o f K  ab orthogonal to the 
group orbits. 

Finally, we obtain the same explicit form of the metric components depend- 
ing on the coordinates x and y as Carter (1968) for his Klein-Gordon separable 
metrics: Define U by 

or: = x ( y )  - ~ ( x )  ( 4 . 2 )  

Then the relation between the tetrad and coordinate vectors is given by 

Ta =A18ta +B16eaa z a  =AaSta +B28~a (4.3) 
X a = (AxU-1)1/26xa ' za  = (AyU-1) l /Z~ya  

because of (3.7), (4.2), with 

(All B1):= ((¢1 /~1t-1 

2 B2 ~ t~2/ 

and 
sig U = sig A x = sig 2Xy (4.4) 

With (2.6) and (4.3) the metric takes the form 

gab = (A 12 - A22)6ta6t b + 2(A 1B1 - A zB2)6~%~ ) + (B12 - Ba2)gq)a6~ b 

- (U -1 Ax)c~xa~x b -- (U -1 Ay)~yaay b (4.5) 
where Ug xx = - ~ x ( X )  and Ug yy = - -Ay(y ) .  
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Because by is an eigenvector of  the Killing tensor K ab for the eigenvalue gt, 
we find [for a proof see Woodhouse (1975), Proposition 3.4] 

0 = [Oy, K - IJG] ab 

= Oy(UA 12)6ta6t b + Oy(UB12)~a6~ b + 2Oy(UA 1B1 )6~a5~ ) 

from which it follows that UA 12 , UB12 , and UA 1B1 are independent o f y .  
Analogously UA2 z, UB2 2, and UA2B2 are independent o fx .  Therefore Vx r 
and Vy r (r = 1,2)  defined by 

Vx r = [U[1/2(A1,B1) ,  Vy r = [U[1/2(A2,B2) 

depend only on x and y ,  respectively, such that the metric (4.5) takes the form 

where r = I, 2 and z r = (t, ~b). 5 That is exactly the form of  the Hamilton- 
Jacobi separable metrics given by Carter [1968, equation (57)].  

The author (1976) has shown that condition (4.1) is equivalent with 
Ox 0y in ]gXX [g[1/2 [ = 0, where g = det gab. We integrate and obtain with 
arbitrary functions fx(x)  and f y ( y )  

[gl 1/2 = Ufxfy 

We use the freedom of  transformation o f x  and y to get 

Ig[ 1/2 = U (4.6) 

which is equivalent to (4.1). The metric determinant g is given by 

g = _ U  2 [AxAy(A1B 2 _ A2BI)2]  -1 

We compare the last two equations and find 

U 2 = UZ(AIB2 - A2B1)2AxAy  (4.7) 

At least we define Zx r and Zy r by 

Zx r := IAxI1/Z]u]I/2(B1,A1), Zy r := [ Ayll/2[ U[1/2(B2,A2) 

so that with (4.4) and (4.7) condition (4.6) is equivalent to 

Z := det Z i  r = U 

which is Carter's condition (79), so that the Klein-Gordon equation also 
separates completely. 

A ekno wledgm en ts 

I am grateful to Dr. R. Ebert and Dr. R. Riidiger for valuable discussions and helpful 
comments. 

s The signs in brackets are valid for spacelike orbits. 



CARTER'S SEPARABLE SPACE-TIMES 549 

References 

Carter, B, (1968). Communications in MathematiealPhysics, 10, 280. 
Carter, B. (1969).Journal o fMathematicalPhysics, 10, 70. 
Dietz, W. (1976). Journal o.fPhysics, A9,519. 
Eisenhart, L. P. (1948). Riemannian Geometcv, Princeton, University Press, sixth edition. 
Geroch, R. (1970). Journal of  Mathematical Physics, t 1, 1955. 
ttauser, I., and MalhioL R. J. (1976). Journal of  Mathematical Physics, 17, 1306. 
Penrose, R., and Watker, M. (1970). Communications in Mathematical Physics, 18,265. 
Woodhouse, N. M. J. (1975). Communications in Mathematical Physics, 44, 9. 


